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In the three-dimensional magnetic confinement con-
figurations, the results of local mode analyses of the bal-
looning modes in the covering space (quasi modes) cannot
be directly connected by superposition to the global mode
analyses of the ballooning modes in the configuration
space (physical modes) because of the lack of symmetry.
However, a qualitative relation has been established to
connect the quasi modes to physical modes in planar axis
heliotron configurations with a large Shafranov shift.
This relation is based on the topological structure of the
level surfaces of the eigenvalues of the quasi modes.
High-beta magnetohydrodynamic equilibria in the inward-
shifted Large Helical Device configuration are exam-
ined. It is shown that the core plasma stays in the second
stability, and the peripheral plasma stays near the mar-
ginally stable state against ballooning modes.
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I. INTRODUCTION

The stability of ballooning modes is significantly
influenced by the local structure of the magnetic config-
uration, i.e., by the local magnetic shear and the local
magnetic curvature. It is thus difficult to determine the
general properties of ballooning modes in the three di-
mensional (3D) configurations. Also, in 3D configura-
tions, there is a theoretical problem. There is no exact
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way to construct the physical modes in the configuration
space from the superposition of the quasi modes in the
covering space based on the high-mode-number balloon-
ing equation.! In this paper, properties of the ballooning
modes in both the covering space and the configuration
space have been intensively investigated in planar axis
heliotron configurations allowing a large Shafranov shift,
like the Large Helical Device? (LHD). We show that the
ballooning modes in the configuration space can be con-
nected to the ballooning modes in the covering space
through the topological structure of the level surfaces of
the eigenvalues of the quasi modes in the (i, 6;, «) space,
where ¢, ), and « are the label of the flux surfaces, the
radial wave number, and the label of the magnetic field
lines on a specified flux surface, respectively. Especially,
recently established high-beta plasmas with 8 = 3%,
where S is the ratio of the averaged kinetic pressure to
the averaged magnetic pressure, are examined taking into
account both the clarified ballooning properties and the
experimental observations.?

The organization of the paper is as follows. The re-
sults of the local mode analyses in the covering space are
shown in Sec. II, where the destabilization mechanism of
the high-mode-number ballooning modes in the stellarator-
like magnetic shear region and the relation of the bal-
looning modes in the covering space (quasi modes) to
those in the configuration space (physical modes) are
discussed. Since there is no exact way in 3D configura-
tions to construct the physical modes from the superposi-
tion of the quasi modes, a conjecture on the physical
modes is derived from the results of the quasi modes.
Such a conjecture, which is based on the topological
structure of the level surfaces of the eigenvalues of the
quasi-modes in (¢, 6, @) space, is proved in Sec. ITI by
using the global mode analyses for Mercier stable and
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unstable equilibria. Also, the relation between balloon-
ing modes and interchange modes and the effects of the
boundary condition imposed on the perturbations on the
mode structure are examined. Section IV is devoted to
analyzing the magnetohydrodynamic (MHD) stability of
the high-beta MHD equilibria in inward-shifted LHD
configurations on the basis of the properties of the bal-
looning modes. Using the local equilibrium variation
method, we show that the core plasma stays in the second
stability region, and the peripheral plasma stays near the
marginally stable state against ballooning modes for equi-
libria similar to that observed experimentally. Summary
and discussion are in Sec. V.

1. LOCAL MODE ANALYSES IN THE COVERING SPACE

The local mode analyses of the high-mode-number
ballooning modes in the covering space are presented in
this section. The destabilization mechanism of the high-
mode-number ballooning modes in the stellarator-like
magnetic shear region and the relation between quasi
modes and physical modes is discussed. Although in the
3D configurations, the physical modes are not exactly
constructed by the quasi modes, a conjecture on the phys-
ical ballooning modes is derived from the local mode
analyses in the covering space.

II.A. Destabilization Mechanism

In the case of the planar axis heliotron configura-
tions, like LHD consisting of two twisted helical coils
with the same winding law with the toroidal field period
M (= 10 for LHD) and three set of poloidal coils with
up-down symmetry, the Shafranov shift is essentially axi-
symmetric and is fairly large due to the low vacuum
rotational transform +(~0.4) near the magnetic axis. Since
it is the Shafranov shift that makes the difference be-
tween the local magnetic shear, § = —5,, and the global
magnetic shear, s = —s,, the difference between the local
magnetic shear and the global magnetic shear § — s =
—(8, — s,) is essentially axisymmetric and large, where
5§ (s) and §, (s,) are the local magnetic shear (global
magnetic shear) in terms of + and the safety factor g =
1/+, respectively. From these two essential characteris-
tics of the Shafranov shift, a model equation of the local
magnetic shear § = —§, is derived by using a stellarator
expansion based on the high-beta ordering. The pressure
in the whole plasma region must be treated in the high-
beta ordering of tokamaks, namely, 8 ~ O(g,), where
&; = a/R with the minor radius a and the major radius R
so that the radial derivative of the Shafranov shift A
becomes the order of unity: dA/dr = A" ~ O(1). The
model equation of the local magnetic shear in standard
tokamaks is usually derived by using low-beta ordering
[where B8 ~ O(e?) and so A’ ~ O(e,)] in the whole
plasma region [except for a local region with a steep
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pressure gradient, where 8 ~ O(g,) and A’ ~ O(1)]. The
model expression for §, in tokamaks is derived in the
region with a local steep pressure gradient. The model
expression for the local magnetic shear §, for the planar
axis heliotron with large Shafranov shift and the standard
tokamak is completely different*:

5, =s,—aFcosm ,

1, tokamaks

L+ 3s, +1B"/B’ LHD (1)
4 b b

f:

where s, = (r/q)(dg/dr) and & = —RB'/+*(> 0), and
" =d/dr, respectively. The difference arises from whether
the whole plasma region is treated in the high-beta or-
dering or not. In standard tokamaks with s, > 0, the local
magnetic shear §, disappears for a ~ s, in the outboard of
the torus (n = 0), where the magnetic curvature due to
toroidicity is locally unfavorable, and this leads to the
destabilization of the high-n ballooning modes. In con-
trast, in planar axis heliotron configurations with a large
Shafranov shift, the local magnetic shear §, disappears in
the outboard of the torus for a ~ 4s,/(1 + 3s,) near
the radial position with the largest pressure gradient
(B” = 0), even in the stellarator-like magnetic shear
region when the magnetic shear is fairly high (s, = —1)
(Ref. 4). This is the destabilizing mechanism of the high-
mode-number ballooning modes in the stellarator-like
magnetic shear region (s, < 0) in the planar axis helio-
tron configurations with a large Shafranov shift like LHD.
Note that a large Shafranov shift is needed to eliminate
stabilizing effects by the local magnetic shear in the
stellarator-like magnetic shear region. The 3D properties
of the ballooning modes in the planar axis heliotron con-
figurations are mainly due to the local magnetic curva-
ture. Since the shape of the poloidal cross section of the
LHD is a rotating ellipse, the local magnetic curvature
consists of two parts. One is due to toroidicity, and the
other is due to helicity. Even in the outboard of the torus,
the magnetic curvature becomes locally favorable in the
vertically elongated poloidal cross section, which mani-
fests the 3D properties of the local magnetic curvature.
In one toroidal turn, locally unfavorable and locally fa-
vorable magnetic curvatures alternatively appear in the
outboard of the torus in the horizontally and vertically
elongated poloidal cross sections, respectively. This strong
magnetic field line dependence of the local magnetic
curvature leads to the existence of 3D ballooning modes
discussed in the following sections.

11.B. Relation Between Quasi Modes and Physical Modes

High-mode-number ballooning modes are analyzed
in the covering space (i, 7, «), where ¢, «, and 7 are the
label of the flux surface or the toroidal flux, the label of
the magnetic field line on a specified flux surface ¢/, and
FUSION SCIENCE AND TECHNOLOGY
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the coordinate along the magnetic field line specified by
¢ and «, respectively. The covering space (#,7,«a) is
related to the straight field line magnetic coordinates
(,60,{) asmp=6and @ = ¢ — 6/+ (6 and { are poloidal
and toroidal angles, respectively), and so two labels #
and « are related to the magnetic field as B=4+Va X Vij.
By using flute-ordering with |k ¢| > |ky|, the incom-
pressible quasi modes in the covering space are assumed
to have an eikonal form: &, = [(B X k,)/B?]XeiS~ivt,
where S is the eikonal and the perpendicular wave num—
ber k| is expressed in terms of the eikonal as k., =VS, and
so S = S(i, ). The slow change along a magnetic field
line related to the parallel wave number k is expressed
by the function X (k; = V,X/X ), which is governed by the
incompressible ballooning equation. Consequently, the
functions X and w are the solution, or eigenfunction, and
the frequency, or growth rate, of the high-mode-number
incompressible ballooning equation. Since the high-mode-
number ballooning equation is self-adjoint, the eigen-
value corresponding to the eigenfunction X is w?. The
eigenfunction X and the eigenvalue w? have the follow-
ing parameter dependence in the three-dimensional mag-
netic configurations:

X = X(77|¢a gk’a)’

where 6y is the radial wave number defined as 6, = 9,5/
4 S, which comes from the perpendicular wave number
kL, =VS=09,SVa+d SVq=0,S[Va + 6,Vq] (hereafter,
the safety factor ¢ is used instead of ). Note that the
eigenfunction X and the eigenvalue w? are independent
of « in the axisymmetric tokamaks, because every mag-
netic field line in a specified flux surface is equivalent to
the other in the covering space. The quasi modes in the
covering space are not physical modes in the configura-
tion space because they do not generally satisfy the double-
periodic condition in both poloidal and toroidal directions.
Thus, the relation of the quasi modes in the covering
space to the physical modes in the configuration space
must be established. The physical modes in the configu-
ration space satisfying the double-periodic condition in
both poloidal and toroidal directions are considered to be
constructed by superposing the quasi modes with the
same eigenvalue w?. This construction becomes possible
when the eikonal satisfies the double periodic condition
and single-valuedness with respect to g on a level surface
of the eigenvalue w?(q, 0, @) (Ref. 1).

In axisymmetric tokamaks, the level surfaces of w?
in the 3D space (g, 0;, @) become straight cylinders with
the axis in the a direction because « is an ignorable
coordinate, w?(g, 6;), so that those conditions are satis-
fied on a set of level surfaces of w?(q, 6;) or 6, = 0,(gq, w?)
for a set of eigenvalues w?. As a result, the semiclassical
quantization condition is derived:

w?=w?Y.6,.a) , 2)

1 IN +1
— Pdq 6,(q,w* = constant) = —— ,  (3)
27 2n
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where n and N, are the toroidal mode number and the
radial node number, respectively (note that planar level
surfaces of w? infinitely continuous in the 6 direction,
which appear in fairly low magnetic shear region, are
omitted here). The semiclassical quantization condition
Eq. (3) means that the physical modes in the configura-
tion space can be constructed from the quasi modes in the
covering space when the eigenvalues w? of the quasi
modes satisfy the semiclassical quantization condition
Eq. (3) for an adequately selected toroidal mode number
n and radial node number N,. In other words, the eigen-
value of physical modes wﬁhy are distinguished by n
and N,: wph)s ph)s(n N,). This semiclassical quanti-
zation condition is also obtained by solving the ray equa-
tions on the level surfaces of eigenvalue w?(g, ;) in the
3D space (g, 6, a) and by requiring the eikonal to be
doubly periodic and single-valued in ¢ (Ref. 1).

On the other hand, in 3D configurations, the eigen-
values of the quasi modes have « dependence, so the
solution of the ray equations does not exactly satisfy the
conditions that the eikonal be doubly periodic and single-
valued in g. This leads to the result that physical modes
in the configuration space are not exactly constructed
from the quasi modes in the covering space. Thus, only a
conjecture regarding such a construction is allowed. This
fact reflects that the high-mode-number ballooning modes
in the 3D configurations have such a strong toroidal mode
coupling that the toroidal mode number 7 is not a good
quantum number. To make a conjecture on the physical
modes, the level surfaces of w? in the (g, 0, ) space are
calculated.> One example of the level surfaces of unsta-
ble normalized eigenvalues Q> = Q?(q, 6, = 0,a) (= 0)
in a Mercier-unstable equilibrium is shown in Fig. 1,

2 o/ (27 /M) =

1.0

Fig. 1. The level surfaces of the normalized eigenvalues
Q2%(,6, = 0,a) for Mercier-unstable MHD equilib-
rium in the standard LHD configuration. Note that ¢ is
used instead of ¢ and that almost all parts of the level
surfaces denoted by circles are omitted so that open
circles are created.
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where the currentless MHD equilibrium with the pres-
sure profile P(s) = Py(1 — s2)? (s is the normalized
toroidal flux) is used in the standard LHD configuration
with the vacuum magnetic axis R,, = 3.75 m. The
normalized eigenvalue is defined as Q?(q, 6, a) =
0?*(q,0,,a)73(q), where 74(q) is the local poloidal
Alfvén transit time defined as 7, = \/ﬁ/ Qmed®; /dV)
with the ion mass density p,,, the toroidal flux ®;, and
the plasma volume V. The normalized eigenvalue () is
used instead of w to clearly show the topological struc-
ture. For the original eigenvalue w, the topological
structure is highly deformed through the + dependence of
T4. It is understood that two types of topological level
surfaces exist, namely, lines and circles on the (g (), )
plane with 8, = 0. From the results given by Fig. 1 and
those in Ref. 5, the overall structure of the level surfaces
of unstable eigenvalues w?(g, O, ) (= 0) in the (g, Oy, @)
space is understood. The schematic pictures of the resul-
tant level surfaces of the unstable eigenvalues w? (=< 0)
in the planar axis heliotron configurations with a large
Shafranov shift are shown in Fig. 2 together with the
axisymmetric case. In Mercier-unstable equilibria, two
types of topological level surfaces coexist in the Mercier-
unstable region (D; > 0) with stellarator-like global
magnetic shear with s = dIn+/dInr(> 0). One type is
cylindrical, like the tokamak case; the other is spherical.
The latter resides inside the former. In Mercier-stable
equilibria, only spherical level surfaces exist. The spher-
ical level surfaces are separated along the « axis with a
distance of 27r/M, where M is the equilibrium toroidal
field period, which comes from the fact that the ballooning-
unstable magnetic field lines are localized in each toroi-
dal field period (note that « = ¢ — 6/+). In the LHD case,
as mentioned in Sec. II.A, such an unstable region cor-
responds to the horizontally elongated poloidal cross sec-
tion. Note that, independent of the topology of the level
surfaces, the magnitude of w? increases (the quasi modes
become more unstable) from outer level surfaces to inner
level surfaces. From those results, the following conjec-
ture on the physical finite-n ballooning modes is obtained>:

1. Spherical level surfaces correspond to 3D bal-

looning modes with strong toroidal mode coupling. Those
modes will be destabilized for relatively high toroidal

—

: — ) e
k f;’(tP) k m
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mode numbers n, namely, n > M or n > M where M is
the field periodicity.

2. Cylindrical level surfaces correspond to two-
dimensional-like (2D-like) ballooning modes with weak
toroidal mode coupling like those in tokamaks or inter-
change modes. Those modes will be destabilized for rel-
atively low n, namely, n < M.

3. In Mercier-stable equilibria, only 3D ballooning
modes with n > M or n > M might be destabilized.

4. In Mercier-unstable equilibria, both 3D balloon-
ing modes with n > M or n > M and 2D-like ballooning
modes or interchange modes with n =< M might be de-
stabilized. The former should have larger growth rates
than the latter.

5. In the cases of 2D-like ballooning modes and in-
terchange modes, the toroidal mode number n might be a
good quantum number so that the semiclassical quanti-
zation condition given by Eq. (3) might be applicable to
them.

I1l. GLOBAL MODE ANALYSES IN THE
CONFIGURATION SPACE

Global mode analyses have been performed for in-
compressible perturbations using the CAS3D code® to
confirm the conjecture on finite-n ballooning modes in
the configuration space. The properties of both balloon-
ing modes and interchange modes and the relation of the
ballooning modes to the interchange modes are clarified.
Moreover, the effects of the boundary condition of the
perturbations on the mode structure are discussed in this
section.

lILLA. In Mercier-Unstable Equilibria

Mercier-unstable equilibria’ have recently been in-
vestigated in the LHD for both the inward-shifted LHD
configuration with the vacuum magnetic axis at R=3.6 m
and in the standard LHD configuration with the vacuum
magnetic axis at R = 3.75 m (Ref. 3). These equilibria
are currentless with pressure profile P(s) = P(0)(1 — )

) o
2 )
o 2n
E
g(yp) 9 q(y)

Fig. 2. The level surfaces of w? for tokamaks (the first column), Mercier-unstable (the second column), and Mercier-stable (the
third column) planar axis heliotron configurations with a large Shafranov shift.
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(1 — %) (s is the normalized toroidal flux). As is ex-
pected from the conjecture regarding the high-mode-
number ballooning modes analyses, the toroidal mode
coupling for modes with n < M and with n ~ M is indeed
so weak that the toroidal mode number n is used as a
good quantum number. Figures 3 and 4 show most un-
stable modes with n = —4 and with n = —11, respec-
tively, for currentless MHD equilibria with By = 4%
(upper row) and with 8y = 8% (lower row) in the inward-
shifted LHD configuration, where 3, indicates the 8 value
at the magnetic axis. The differences between inter-
change modes and 2D-like ballooning modes are quite
clear in the radial structure of the Fourier modes of the
radial displacement £ = & - Vs shown in the first columns
of Figs. 3 and 4. In the case of the interchange modes, the
radially adjacent Fourier modes have opposite signs; how-
ever, the radially adjacent Fourier modes have the same
sign in 2D-like ballooning modes. This difference leads
to the difference on the poloidal localization of the per-
turbed pressure. Although the differences between inter-
change modes and 2D-like ballooning modes are not so
clear in the figures of the perturbed pressure profile, an

BALLOONING MODES IN HELIOTRON CONFIGURATIONS

interchange mode (a 2D-like ballooning mode) makes
radially extended vortex-like structures on the inboard
(outboard) of the torus. Such vortex-like structures of
an interchange mode (a 2D-like ballooning mode) are
radially split into many small vortex-like structures on
the outboard (inboard) of the torus, which is discussed in
Sec. III.C in detail. As is conjectured from the local mode
analyses in the covering space, an interchange mode or a
2D-like ballooning mode is destabilized as the most un-
stable mode, depending on the S value, for low toroidal
mode numbers with n < M and moderate toroidal mode
numbers with n ~ M. As B increases, the most unstable
mode changes from an interchange mode into a 2D-like
ballooning mode for low toroidal mode numbers with
n < M and moderate toroidal mode numbers with n ~ M.
Note that which mode is destabilized as the most unsta-
ble mode between an interchange mode and a 2D-like
ballooning mode depends strongly on the B values (in
low-beta, ballooning modes are not destabilized) and
weakly on the magnetic configurations.” Properties of
ballooning modes and interchange modes and the rela-
tion between them are discussed in Sec. III.C in detail.

1.0 3.0

33

R 40 43

Fig. 3. Most unstable modes for n = —4 in the currentless MHD equilibria with 8y = 4% (upper row) and with By = 8% (lower
row) in the inward-shifted LHD configuration. The figures in the first column indicate the radial profile of dominant
Fourier modes of the radial displacement & = £-Vs as a function of the normalized minor radius p = \s, and the figures
in the second and third columns denote contours of the perturbed pressure profile in the vertically and horizontally
elongated poloidal cross sections of the Boozer coordinates, respectively, where incompressible perturbations are assumed
under the free boundary condition. The 2D-like ballooning mode with n = —4 (lower row) has weak toroidal mode
coupling so that a 2D-like ballooning mode with n = — 14 is superposed. This superposition is most clearly seen in the first

figure in the lower row.
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0.0

-2.0r

g
(=]
T

0.0

Fig. 4. Most unstable modes for n = —11 in the currentless MHD equilibria with By = 4% (upper row) and with By = 8% (lower
row) in the inward-shifted LHD configuration. The figures in the first column indicate the radial profile of dominant
Fourier modes of the radial displacement & as a function of p = 4[s, and the figures in the second and third columns denote
contours of the perturbed pressure profile in the vertically and horizontally elongated poloidal cross sections of the Boozer
coordinates, respectively, where incompressible perturbations are assumed under the free boundary condition.

For n > M or n > M, 3D ballooning modes with
strong toroidal mode coupling are destabilized as the
most unstable modes, as is shown in Fig. 5 in the cur-
rentless MHD equilibria with 8y = 6% in the standard
LHD configuration with the vacuum magnetic axis at
R =3.75 m. As is understood from the radial profiles of
the dominant Fourier modes, 3D ballooning modes con-
sist of the superposition of the 2D-like ballooning modes
with a single toroidal mode number n and multiple po-
loidal mode numbers. It is quite clear from the contours
of the perturbed pressure in the poloidal cross sections
that as the dominant toroidal mode number increases, the
toroidal mode coupling becomes so significant that the
3D ballooning modes have a tendency to be localized in
the flux tubes.

I11.B. In Mercier-Stable Equilibria

The same types of global mode analyses have been
performed for Mercier-stable equilibria in the standard
LHD configuration (with the vacuum magnetic axis at
R = 3.75 m). In Mercier-stable, currentless equilibria,
low-beta plasmas are completely stable, and only 3D
ballooning modes with strong toroidal mode coupling
are destabilized as the most unstable modes at high beta,

84

as is shown in Fig. 6. As well as in the Mercier-unstable
equilibria, the 3D ballooning modes consist of the super-
position of the 2D-like ballooning modes with a single
toroidal mode number n and multiple poloidal mode num-
bers, and the 3D ballooning modes have a tendency to be
localized in the flux tubes as the toroidal mode numbers
n increase.

From the aforementioned global mode analyses, it
might be concluded that the conjecture from the local
mode analyses is confirmed for both Mercier-unstable
and Mercier-stable MHD equilibria. Note that many 3D
ballooning modes with different growth rates and radial
structures are excited for perturbations with n > M and
n > M in both the high-beta Mercier-unstable and
Mercier-stable MHD equilibria. Whether such 3D bal-
looning modes will be distinguished by their mode struc-
tures will be discussed in Sec. V.

11l.C. Relation of Ballooning Modes
to Interchange Modes

In the case of 2D-like ballooning modes, as is shown
in Sec. III.A, the toroidal mode coupling is so weak that
the toroidal mode number n is a good quantum number.
Thus, the semiclassical quantization condition might be
FUSION SCIENCE AND TECHNOLOGY
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Fig. 5. Most unstable modes for n > M (upper row) and n > M (lower row) in the standard LHD configuration with the vacuum
magnetic axis R,, = 3.75 m. The figures in the first column indicate the radial profile of dominant Fourier modes of the
radial displacement & as a function of p = [s, and the figures in the second and third columns denote contours of the
perturbed pressure profile in the vertically and horizontally elongated poloidal cross sections of the Boozer coordinates,
respectively, where incompressible perturbations are assumed under the fixed boundary condition. The numbers in the
figures in the first column denote the dominant toroidal mode numbers 7.

approximately applicable. In other words, the eigenval-
ues w? will be distinguished by both the toroidal mode
number 7z and the radial node number N,; w2 = w?(n, N,).
This expectation is qualitatively confirmed, as is shown
in Fig. 7, for the Mercier-unstable, currentless equilib-
rium with 8y = 8% used in Figs. 3 and 4. The eigenvalues
of the 2D-like ballooning modes with the same dominant
toroidal mode number n are distinguished by the radial
node number N,.. For the same radial node number N,, the
growth rates of 2D-like ballooning modes increase with
the toroidal mode number n. As the radial node number
N, increases, the growth rates of the 2D-like ballooning
modes with the same toroidal mode number n become
smaller. Both dependences are consistent with the semi-
classical quantum condition given by Eq. (3).

Those properties of 2D-like ballooning modes given
by the semiclassical quantization condition are also seen
for the interchange modes. Indeed, such properties are
proved by comparing the eigenvalues obtained by global
mode analyses to those by local mode analyses.® Here, a
qualitative but more instructive and intuitive method will
be used. The radial structures of the Fourier modes of the
radial displacement & = £- Vs of the interchange modes
are absolutely different from those of the 2D-like bal-
FUSION SCIENCE AND TECHNOLOGY
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looning modes, as is understood from the figures in the
first column of Figs. 3 and 4. However, by shifting the
origin of the poloidal angle from the outboard side to
inboard side of the torus, the properties of the radial
localization of the interchange modes become clear.” Usu-
ally, the origin of the poloidal angle is on the outboard of
the torus in a global Fourier code such as CAS3D. In the
magnetic coordinate system (¢, 6,{) used in CAS3D, the
radial displacement ¢ is Fourier decomposed as

EW.0,0) = X &, ,(p)cos[mb +n{] . 4)

On the outboard of the torus with & = 0 on the poloidal
cross section with £ = 0, Eq. (4) becomes

£(1,0,0) = X &,.,,(4) . (5)

and on the inboard of the torus with § = 7 on the poloidal
cross section with ¢ = 0, Eq. (4) becomes

f(lp,W,O) = z ‘fm,n(lp)(_l)m . (6)
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Fig. 6.

Fig. 7.
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Most unstable modes for n > M (upper row) and n > M (lower row) in the currentless Mercier-stable MHD equilibria with
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figures in the second and third columns denote contours of the perturbed pressure profile in the vertically and horizontally
elongated poloidal cross sections of the Boozer coordinates, respectively, where incompressible perturbations are assumed
under the fixed boundary condition. The numbers in the figures in the first column denote the dominant toroidal mode
numbers n.

1.92

| 2.54

< pOO0O

< pO o

<pO O
<pO O
<t 0O [e]
<t 0O [¢]
<> 0O
<>(>Fl (@]

10.0
(a)

-0.4209 0

0.5
(b)

g 1.0 23000

0.5
()

S'I.O

(a) The square of the growth rates y2 = —w? in terms of the toroidal mode number n, where the eigenvalues are

distinguished by the radial node number N, for each toroidal mode number n. The circles, rectangles, triangles, and
diamonds correspond to N, = 0, 1, 2, and 3, respectively. The unstable modes with n = 6 (n = 4) correspond to 2D-like
ballooning (interchange) modes. As the examples, the radial profiles of the dominant Fourier modes of the radial displace-
ment & with n = 9 are shown as the function of the normalized toroidal flux s for (b) the most unstable ballooning mode
with N, = 0 and for (c) the second most unstable ballooning mode with N, = 1. The square of the growth rate y?>
corresponding to the ballooning modes with N, = 0 (N, = 1) is indicated by the circle (rectangle) for n = 9 in (a). Here,
the Mercier-unstable MHD equilibrium with 8y = 8% in Figs. 3 and 4 is used. In those analyses, incompressible pertur-
bations are used under the fixed boundary condition.
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Fig. 8. (a) The square of the growth rates y> = —w? in terms of the toroidal mode number n, where the eigenvalues are

distinguished by the radial node number N, for each toroidal mode number n. The circles, rectangles, triangles, and
diamonds correspond to N, = 0, 1, 2, and 3, respectively. The radial profiles of the dominant Fourier modes of & with
n =9 (b) for the most unstable interchange mode with N, = 0 are shown as the functions of the normalized toroidal flux
s for the original form and (c) for the form with the shift of the poloidal angle from outboard to inboard of the torus. The
same quantities for the second most unstable interchange mode with N, = 1 are shown (d) for the original form and (e) for
the form with the shift of the poloidal angle from outboard to inboard of the torus. The square of the growth rate >
corresponding to the interchange modes with N, = 0 (N, = 1) is indicated by the circle (rectangle) for n = 9 in (a). Here,
Mercier-unstable MHD equilibrium with 8y = 4% in Figs. 3 and 4 and incompressible perturbations under the fixed

boundary condition are used.

Thus, when & corresponds to a 2D-ballooning mode,
&n.»(¢) has the same sign independently of the poloidal
mode numbers, as is shown in the lower figure in the first
column of Figs. 3 and 4 and in Fig. 7b. The eigenfunction
localizes on the outboard of the torus, as is understood by
Eq. (5). When ¢ corresponds to an interchange mode,
&..(¢) has the opposite sign between adjacent poloidal
modes: Fourier modes with even poloidal mode numbers
have the opposite sign to Fourier modes with odd poloi-
dal mode numbers, as is shown in the upper figure in the
first column of Figs. 3 and 4 and in Figs. 8b and 8d. The
eigenfunction now localizes on the inboard of the torus,
as is understood by Eq. (6). The shift of the origin of the
poloidal angle from outboard to inboard of the torus cor-
responds to replacing 0 in Eq. (4) by 6 — 7 so that

EW0.0) = D & () (=1)" cos[mO +nl] . (7)

Thus, on the inboard of the torus with & = 0 and { = 0,
Eq. (7) becomes

£(1,0,0) = X &, ,(p)(=D)" | (8)
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which means that the interchange modes localize on the
inboard of the torus. Thus, in the cases of 2D-like bal-
looning modes (interchange modes), the Fourier modes
of the radial displacement ¢ are in phase outboard (in-
board) of the torus. From this difference on the poloidal
localization, an interchange mode (a 2D-like ballooning
mode) makes radially extended vortex-like structures in-
board (outboard) of the torus. Such vortex-like structures
of an interchange mode (a 2D-like ballooning mode) are
radially split into many small vortex-like structures out-
board (inboard) of the torus. Moreover, by using this
difference, the radial node number of the interchange
modes is distinguished as well as for the ballooning modes.
In the case of the ballooning modes localizing outboard
of the torus, the radial node number can be counted on
the outboard of the torus, as is done in Fig. 7. In the case
of the interchange modes localizing inboard of the torus,
the radial node number can be counted in the inboard
of the torus. By using those properties, the interchange
modes with the same toroidal mode number n are also
distinguished by the radial node number N,. The exam-
ples are shown in Fig. 8, where the Mercier-unstable,
currentless equilibrium with 8y = 4% is again used, as in
Figs. 3 and 4. In Fig. 8, all the modes are interchange
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modes, and the properties expected from the semiclassi-
cal quantization condition, given by Eq. (3), are clearly
seen for the modes with n = 6. For the modes with n = 4,
the monotony of the growth rate with respect to n is lost,
because the Fourier components of such low-n modes
have such a wide radial structure that their properties are
not completely determined by the local structure around
their rational surfaces. It is quite clear that both 2D-like
ballooning modes and interchange modes are distin-
guished by both the toroidal mode number n and the
radial node number N,, which means that the semiclas-
sical quantization condition is applicable to both modes.

I11.D. Effects of the Boundary Condition
of the Perturbation

The effects of the boundary condition of the pertur-
bations on the mode structure are considered in the
Mercier-unstable MHD equilibria in the inward-shifted
LHD configuration. Under the fixed boundary condition
with £(a) = 0, each Fourier mode does not expand so
much in the radial direction, and the radial overlapping
of the Fourier modes is restricted. However, under the
free boundary condition with &(a) # 0, the radial over-
lapping is allowed to some extent, which leads to the
change in the mode structure from an interchange mode
to a 2D-like ballooning mode, when the MHD equilib-
rium is slightly unstable or near the marginally stable
state against ballooning modes. The ballooning modes
induced by the free boundary condition are named free-
boundary-induced ballooning modes. Such an example
is shown in Fig. 9. Under the fixed boundary condition,
the eigenfunction with n = 2 shows interchange structure
(Fig. 9b), which changes into a 2D-like ballooning struc-
ture under the free boundary condition (Fig. 9c). The
effects of the free boundary condition are significant for
low-n modes because the radial extension of each Fou-
rier mode becomes wider for lower toroidal mode num-
ber n, which is reflected in the significant differences of

BALLOONING MODES IN HELIOTRON CONFIGURATIONS

the growth rates of the low-n perturbations between fixed
and free boundary conditions as is shown in Fig. 9a.
Thus, it is important to use the free boundary condition
for perturbations in the global mode analyses, partially
because the growth rate under the free boundary condi-
tion is larger than that under the fixed boundary condi-
tion, and partially because effects of the radially global
perturbations under the free boundary condition on MHD
equilibrium become more significant than those by the
radially localized perturbations under the fixed boundary
condition.

As is shown in Fig. 9a, the enhanced destabilization
effect of the free boundary condition becomes weaker as
the toroidal mode number # increases for the MHD equi-
libria with sufficiently small pressure gradient near the
plasma boundary. However, when the pressure gradient
is steep near the plasma boundary, the eigenfunction of
ballooning modes or interchange modes extends up to
the plasma boundary. In such cases, the calculation of
modes with a high toroidal mode number (n > M) must
be done under the free boundary condition. Note that the
free-boundary-induced ballooning modes are the pressure-
driven modes, so that they are different from the peeling
modes, which are essentially current-driven modes, in
tokamaks.

IV. MHD STABILITY ANALYSES OF HIGH-BETA
EQUILIBRIA IN THE INWARD-SHIFTED
LHD CONFIGURATIONS

Based on the properties of the ballooning modes and
interchange modes clarified by the local and global mode
analyses, MHD stability analyses of high-beta equilibria
in the inward-shifted LHD configurations are performed.’
The changes of the equilibrium quantities with 8 are
shown in Fig. 10, where the currentless free boundary
equilibria with pressure profile P(s) = P(0)(1 — s)

(;.1 0.31 0.10
’ g ooo o o8’ g
] o]
005 °© 0© ° -
a o °
o [e]
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Fig. 9. (a) The square of the growth rates y? of the most unstable modes in terms of the toroidal mode number  for fixed boundary
&(a) = 0 (circles) and for the free boundary condition £ (a) # O (rectangles). The radial profiles of the dominant Fourier
modes of & with n = 2 for the most unstable mode are shown as functions of the normalized toroidal flux (b) under the fixed
boundary condition and (c) under the free boundary condition. Here, Mercier-unstable MHD equilibrium with 8y = 8% in

Figs. 3 and 4 is used.
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Fig. 10.

(a) The change in the radial profile of the rotational transform +, (b), in the magnetic well, and (c) in the Mercier criterion

with B. The solid, short-dashed, middle-dashed, and long-dashed lines correspond to 8 =1, 2, 3, and 4%, respectively.

(1 —s5?) are used. The conditions for the MHD equilibria,
namely the free boundary condition, the currentless con-
dition, and the chosen pressure profile, reflect the exper-
imental observations. The key points are that the Mercier
criterion is significantly improved by the magnetic well
formation and that the dangerous + = 3 rational surface
disappears as ( increases. Those improvements are
brought by the Shafranov shift of the whole plasma. The
corresponding normalized growth rates y7,, of the most
unstable modes, where 7, is the poloidal Alfvén transit
time at the magnetic axis, are shown in Fig. 11 as func-
tions of B under the various perturbation conditions. In
any case, strong stabilization (self-stabilization) is seen
as 3 increases. The growth rates of the most realistic
perturbations, namely, compressible perturbations under

the free boundary condition & (a) # 0, are in the range of
the ion diamagnetic frequency, so those modes are con-
sidered to be harmless. An important point is that the
free-boundary-induced ballooning modes are destabi-
lized at high-beta. To examine this situation in detail, the
method of the equilibrium profile variations'®!! has been
applied to the MHD equilibria. This method of equilib-
rium profile variation is a very powerful means of inves-
tigating the stability margin of the equilibrium against
high-mode-number ballooning modes and yields the
dv/dy — dP/di stability diagram corresponding to the
s — a diagram in tokamaks. Figure 12 shows typical
examples.

Judging from the direction of the shift of MHD equi-
librium according to 8 value and the position of MHD

0.3 o I
YTao N 1 family | n = 2 family |n = 3 family |n = 4 family
©
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0.1 — — - — - - -
o . o H 0

O © o = @ @
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Fig. 11. The normalized growth rates y7,o of the most unstable modes versus 3 for various perturbation conditions for four mode
families. The large open circles (with small open circles and small open rectangles) correspond to incompressible
perturbations under the fixed (free) boundary condition. The large open circles and small open circles (small open
rectangles) indicate interchange modes (free-boundary-induced ballooning modes). The small solid rectangles and a small
solid circle at 8 = 4% correspond to compressible perturbations under the free boundary condition and the small solid
rectangles (a small solid circle) indicate free-boundary-induced ballooning modes (an interchange mode).
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Fig. 12. The d&/diy — dP/dis stability diagram (a) in the plasma core, (b) in the plasma periphery, and (c) in the plasma edge. The
horizontal and vertical axes correspond to —s, and « in the s, —  diagram of tokamak plasmas. The solid (dashed) curves
indicate the stability boundary of high-mode-number ballooning modes for 8 = 3% (B = 4%). Two squares attached to
the arrow in each graph indicate the positions of (¢', P") corresponding MHD equilibria at 8 = 3% and 8 = 4%. The arrows
denote the direction of the shift of (+', P’) corresponding to the MHD equilibrium as 8 increase from 8 = 3% to 8 = 4%.
The MHD equilibria are the same as those in Figs. 10 and 11.

equilibria relative to the stability boundary, it might be
concluded that the core region stays in the second stabil-
ity state, the peripheral region stays near the marginally
stable state, and the edge region stays in the first stability
state. In the MHD equilibria used here, the pressure gra-
dient near the plasma edge is quite small compared to the
plasma periphery, so the Mercier criterion changes from
Mercier unstable in the plasma periphery to Mercier sta-
ble near the plasma edge. This fact leads to the quanti-
tative difference of the aforementioned ballooning stability
between the plasma periphery and the plasma edge. When
the equilibria have a finite pressure gradient at the plasma
boundary, the difference between the plasma periphery
and the plasma edge becomes ambiguous.

V. SUMMARY AND DISCUSSIONS

The research on the ballooning modes in the planar
axis heliotron configurations allowing a large Shafranov
shift like the LHD are summarized systematically, with
particular attention given to the high-beta MHD equilib-
ria in the inward-shifted LHD configurations. The rela-
tion of the quasi modes to physical modes, the relation
between ballooning modes and interchange modes, and
also the effects of the boundary condition of the pertur-
bations on the pressure-driven modes are clarified.

In the 3D magnetic confinement configurations, the
results of local mode analyses of the ballooning modes
(quasi modes) in the covering space along the magnetic
field line cannot be directly connected to those of the
global mode analyses of the ballooning modes in the
configuration space (physical modes), because the rule

920

of superposition of the quasi modes is not allowed be-
cause of the lack of symmetry. In other words, the eikonal
S(i, ), where i and « are the label of the flux surfaces
and magnetic field lines, respectively, cannot be deter-
mined, so the phase relation of the quasi modes with the
same eigenvalue is not established in superposing the
quasi modes. However, in planar axis heliotron configu-
rations with a large Shafranov shift, a qualitative relation
has been established that the quasi-ballooning modes in
the covering space can be connected to physical balloon-
ing modes in the configuration space. Such a relation
comes from the topological structure of the level sur-
faces of the eigenvalues in the (¢, 6;, «) space, where i,
0, and « are the label of the flux surfaces, the radial
wave number, and the label of the magnetic field line on
a flux surface, respectively. In the 3D magnetic config-
urations, two types of level surfaces exist in the (¢, 6;, )
space. One is the topologically spheroidal level surfaces,
and the other is topologically cylindrical level surfaces.
The former’s quasi modes correspond to the 3D balloon-
ing modes inherent to 3D configurations consisting of
both relatively high poloidal and toroidal mode numbers
through strong poloidal and toroidal mode coupling. The
latter’s quasi modes correspond to the 2D ballooning
modes with fairly weak toroidal mode couplings, which
are similar to those in the axisymmetric configurations,
and to interchange modes. In the Mercier stable MHD
equilibria, only 3D ballooning modes inherent to 3D con-
figurations might be excited. In the Mercier unstable MHD
equilibria, not only 3D ballooning modes as well as in the
Mercier stable equilibria but also 2D ballooning modes
and/or interchange modes might be excited. Since the
latter has the topologically cylindrical level surfaces of
FUSION SCIENCE AND TECHNOLOGY
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Fig. 13. The 3D ballooning modes in the same MHD equilibrium as that in Fig. 6: (a) the radial profile of dominant Fourier modes
as a function of p = \/E with the dominant toroidal mode numbers and (b) contours of the perturbed pressure profile in
the horizontally elongated poloidal cross section, where incompressible perturbations are assumed under the fixed

boundary condition.

eigenvalues of quasi modes in the (¢, 6, @) space, the
approximate quantization condition connecting the quasi
modes in the covering space to physical modes in the
configuration space is applicable to them. Note that the
quantization condition can be applicable to both 2D bal-
looning modes and interchange modes. Two-dimensional
ballooning modes and interchange modes have smaller
growth rates than those of 3D ballooning modes. Based
on understanding of the properties of the ballooning
modes and by using the equilibrium profile variation
method, it is shown that recently achieved high-beta
MHD equilibria in the inward-shifted LHD configura-
tions stay in the second stable state in the plasma core
and near the marginally stable state in the plasma
periphery.

Since the high-beta plasmas in the inward-shifted
LHD configurations stay near the marginally stable state
in the plasma peripheral region, it should be clarified
whether the experimentally suggested pressure profiles
result from the ballooning instabilities or not.

Another interesting point is whether 3D ballooning
modes are systematically distinguished or not. Figure 13
shows an example of the 3D ballooning modes, where
the same Mercier-stable MHD equilibrium as that in Fig. 6
is used. The typical structure of this 3D ballooning mode
is that it has one radial node (N, = 1) at the averaged
minor radius p = \/E ~0.92. As is mentioned in relation
to Figs. 5 and 6, 3D ballooning modes consist of the
superposition of the 2D-like ballooning modes. Thus, if
there is a rule in the superposition, then 3D ballooning
modes might be systematically distinguished by the ra-
dial node numbers N, and the behavior of the poloidal
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localization, for example, the number of the poloidal nodes
created by the localization in the flux tubes. This point is
associated with the integrability condition of the two-
degrees-of-freedom Hamiltonian system related to the
ray equations of the eikonal. These two points will be
investigated in the near future.
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